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Supercritical Behavior of an Ordered Trajectory 
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The behavior of a particle undergoing a discrete, stepped motion around a circle 
is investigated for the case in which the average number  of steps per revolution 
is the golden mean. The new features of this study are that the map in question 
is not invertible and that consequently the orbit is bunched into intervals within 
the circle. Because of this bunching, one can calculate the motion in some detail. 
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1. INTRODUCTION 

A mapping problem is one in which one investigates the properties of a 
sequence of points z 0, z I , z 2 . . . . .  each point being generated from the last 
by the application of a defined function R: 

5+ ,  = R(~;) (1.1) 

These problems serve as simple models of dynamical behavior in which one 
can think of the zj as a description of the state of the system at a time 
t / = j r .  One is particularly interested in universal or generic properties of 
the set zj-- that  is, properties which do not depend in detail upon the form 
of R. Any such robust property has a chance of being important for the 
behavior of real, and more complex, dynamical systems. 

One set of universal behavior recently investigated(,-3) concerns maps 
in which z is simply a real number and R is a member of a family of maps 
Ra(z ) which obey a kind of periodicity condition 

Ra(z + 1) = 1 + Ra(z) (1.2a) 
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In this case one can think of motion on a circle of unit circumference and 
interpret z as a description of the total distance moved on that circle. The ~2 
dependence of the family is simply linear: 

Ra(z ) = Ro(z ) + a (1.2b) 

Additional requirements include the statement that Ro(z ) be smooth, i.e., at 
least continuous. Four examples of such maps treated in this paper are 

Ro(z ) = z - k sin27rz (1.3a) 

which was studied in Refs. 1-4, and also 

= / (z /X)2 for 0~<z~<X 
Ro( z ) (1.3b) ( 1 for X~<z~<l 

and also 

= ( 1 6 [ z / X ( 1 - z / ) t ) ]  2 for 0 % z ~ < X / 2  
Ro( z ) (1.3c) 

1 for X/2~< z < l  

and finally 

z / X  for 0 ~< z < X (1.3d) 
R ~  1 for )t~<z<~ 1 

In the latter three cases Ro(z ) has flat regions, i.e., regions in which 
R[)(z) = O. 

The trajectories produced by all these and many other maps are 
characterized by a winding number 

~0(f~,z0) = lim z j (1.4) 
j - ~  j 

which describes the average number of revolutions traveled per step. As 
indicated, the winding number is a function of parameters in Ra (e.g., f~) 
and also of the initial point in the trajectory, z 0. When c0 is rational, one 
can describe the motion as phase locked or commensurate. One particular 
case of commensurate motion is a cyclical motion in which zj+ q = zj + p 
with p and q being integers. Then, if q is greater than zero and is the 
smallest integer which makes this condition possible, we have a cycle of 
length q in which the particle undergoes p revolutions per cycle. Clearly 
co = p / q in this case. 

It is also possible to have motions with irrational winding numbers. 
These incommensurate motions are called KAM trajectories and they are 
particularly interesting because they serve as borderline cases. Very near by 
in k and ~2 or in zj there exist orbits with very different behaviors. For small 
k, [k] < 1, these nearby orbits can be very long cycles. For [k[ > 1, the 
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nearby orbits can be long cycles or they can be much more chaotic 
trajectories. It is possible that the cases of incommensurate motion can be 
used to organize and understand the other motions. 

One winding number has been subjected to particular study, the one in 
which oa = (~/~ - 1)/2, that is the inverse of the golden mean. We shall use 
the symbol W to represent this particular value of oa, and we shall get our 
main results for this particular winding number. 

In our work we shall be particularly interested in the "supercritical 
domain" that is in Ro(z ) having derivatives R~(z) which are both positive 
and negative. In the example of Eq. (1.3a), this case arises when Ikl > 1. 
However, this situation is very complex. Instead of treating this case in full 
detail we focus upon a particularly simple subclass of trajectories: the 
so-called "ordered orbits." An orbit zj for j = 0, + 1, _+ 2 . . . .  is said to be 
ordered with winding number oa if the orbit points zj fall onto a circle with 
unit circumference in exactly the same order as the points zj ~ = wj. In 
symbols this ordering condition is the statement that for all integers j ,  k, 
and n 

z j -  z k - n  
> o (1.5) 

( j -  k)o~- n 

whenever the denominator in Eq. (1.5) is non-zero. The ordered orbits will 
be the subject of this paper. 

To understand the behavior in the supercritical domain, we shall make 
heavy use of results which apply to the (simpler) domain in which Ro(z ) is a 
monotonically increasing function of z as in the examples of Eqs. (1.3b-d) 
and also in the example of Eq. (1.3a) for Ikl < 1. In this monotonic domain, 
it is well-known that (v) the winding number ~0 is independent of z0, 

a~(z0, ~) = ~o(~2) (1.6) 

and is a continuous and monotonically nondecreasing function of f~. In 
particular, we shall study features of the o~ = W orbits of models (1.3b-d) 
which also apply to the correspondingly ordered supercritical orbits of 
model (1.3a). 

The subcritical domain is characterized by the condition that Ro(z ) 
always has slope greater than zero. The critical domain has R~(z) > O, with 
some points of zero slope. These two conditions are attained by model 
(1.3a), respectively, for [k I < 1 and k = 1. The other models (1.3b-d) are 
always critical. There is one additional condition satisfied by the subcritical 
orbits with irrational winding number which is not satisfied in the super- 
critical or critical domains. Define orbit points on the circle by 

xj = zj - nj (1.7) 
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where nj, the integer, is chosen to make xj lie in the interval [0, 1). For 
almost any irrational winding number, including w = W, any x in the 
interval [0, 1) will be an accumulation point of the xj. Furthermore, the 
density of orbit points O(x) will be a smooth function of x which remains 
nonzero for all x. 

At criticality, this smoothness disappears. (1-3~ There are an infinite 
number of points for which O(x) vanishes. In the supercritical domain the 
behavior of an orbit with winding number W becomes even more singular. 
In the next section of this paper, we shall give a set of arguments which 
show that surely an orbit indeed exists. This argument shows in addition 
that the orbit points cannot be spread upon the whole circle but that 
instead they are bunched into regions. A more and more precise look will 
define the regions more and more narrowly until one sees that the orbit 
points be in a set of disconnected regions of total measure zero within the 
circle. This is the opposite of the subcritical case in which the orbit filled 
whole circle with finite density. 

In Section 3, a simplified model--which holds in the large-k region--  
is derived by looking at the ordered trajectories which arise from the model 
(1.3a). Since these trajectories are bunched into narrow regions not all of 
the z domain is relevant for their treatment. For the most stable, and most 
interesting trajectories we are concerned with the regions of R(z) near its 
extrema. We thus argue for a model of the form (1.3b) with h << 1. This 
approach is acceptable because no orbit point falls in the flat region of 
R(z). In this third section, we also calculate in low order in h some 
properties of the ordered irrational-o~ trajectory. 

Section 4 is devoted to the derivation of the asymptotic-large j - -  
properties of this trajectory. By using the bunching properties, one can 
predict quite accurately where each point in the trajectory will fall. This 
permits a kind of scaling or renormalization group analysis of the behavior 
of zj for large j ,  starting from z 0 = 0. One of the key results is that for 
j = F2m, where F k is a Fibonacci number, 

ZF2 m = F2,~_ 1 + D2mexp[-A+a+ - A +  ] (1.8) 

Here A +, A _, and D are nonuniversal constants (which, for example, 
depend on X) but 

= 1 ___,/i-12 (1 .9)  

are universal critical indices. Equation (1.8) is supposed to be universally 
accurate in the limit of large m. 

In this section, we also look at another mapping problem correspond- 
ing to the model (1.3c) in which there are two extrema in Ro(z ) in a unit 
interval of z and in which the infinitely long trajectory passes arbitrarily 
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close to both extrema. The behavior of the cycle elements are very different 
in this situation. Instead of Eq. (1.8) one has 

1 z & m = F 2 m - t + D e x p  3 A + m - A - ( a - ) m  (1.10) 

with a = 1/4 and A+, A_, and D being nonuniversal and X-dependent 
constants. 

2. DEFINIT ION AND DESCRIPTION OF SUPERCRIT ICAL ORDERED 
TRAJECTORIES 

This chapter is concerned with giving an outline description of the 
qualitative properties of ordered trajectories, most specifically supercritical 
ordered trajectories with winding number, W =  (,f5--  1)/2. Section 2.1 
describes the behavior in the monotone domain and gives proof of several 
of the observations made in Chapter 1. Section 2.2 describes the particular 
ordering properties of golden mean trajectories, i.e., those with r = W. In 
the last section, results are extended to the supercritical case. 

2.1. The Monotonic Domain 

In the monotonic domain Ra(z ) satisfies, in addition to Eqs. (1.2), the 
condition that if z > z' 

Ra(z ) > Ra(z' ) (2.1) 

It is very easy to show that the winding number is independent of z. Define 
the result of J iterations of R a upon z 0 as Zs(f~,Zo). Because of the 
periodicity zj(f~,z o + l) = 1 + zj(f~,Zo). Now pick z to obey z o < z < z 0 + 
1. Because of the monotonicity 

z] (a, z0) < z] (a, z) < 1 + zs (a, Zo) 

From the definition (1.4), then 

~(a, Zo) < ,o(a, z) < ~(a, z0) 

Thus the winding number is independent of z, in this monotonic case. 
An equally simple and well-known argument shows the ordering of 

trajectories. Let r be the winding number of R a. Define in analogy to 
Eq. (1.5) 

ZQ (f~, Zo) -- P - z o 
r e , o ( z ~  = Q,o(fa) - e (2.2) 

We wish to prove that if oa(~2) v e P / Q ,  then it is always true that Fe, Q(zo) is 
greater than zero. First, this quantity can never be zero. If it were zero then 
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there would be a cycle with ~ = P / Q  4: ~(~2). But this violates the condi- 
tion that there is only one winding number. If for a given P, Q, Fe, Q(z ) 
were negative for any z, it would be negative for all z. Since it is periodic in 
z and continuous there exists ep,Q > 0 such that for all z 

Fe,o(z ) < - ce, e (2.3) 

Then for any positive integer N, Eqs. (2.2) and (2.3) imply 

ZNQ ( ~ ,  ZO) -- NP - z o 
FNP'NQ (ZO) = UQw(f~) - N P  <<. - cp, Q < 0 (2.4) 

As N---> ~ ,  the definition of the winding number implies that FNe,NQ(Zo) 
---> 1. Thence we get the contradiction 1 < 0. Thence (2.3) must be wrong. 
Therefore Fp,a(Z0) is always positive under the conditions stated and Eq. 
(1.5) is true. As a consequence, for any orbit the fractional parts xj and x k 
of zj and z k are ordered in exactly the same way as the fractional parts of 
j~(f~) and k~o(fl). 

By a variant of the same argument, one can prove that in the 
monotonic domain, if o~(f~) is rational and equal to p / q - - w i t h  p and q 
being relatively prime integers--then there exists a cycle Xo, X 1 . . . . .  xq 
= x 0 + p with winding number ~(f~) and length q. To achieve this result 
notice that 

Vp,q(Zo) = zq(a ,  z0) - Z o - p  

must change sign. If it did not and were say always greater than c > 0 then 
o~(f~) > ( p / q  + c)--which is false. 

The monotonic increase of o~(f~) with 12 is a consequence of the 
montonicity of Ra(z ) in f~ and z. 

Next argue for the continuity of ~(f~). For each Q and 12 there will 
exist an integer, P( Q, f~), such that for all z 0 

P( Q,f~) - 1 < Zo(Zo,~2 ) - Zo< P( Q,~) + 1 

Further by continuity there exists an interval (12_ (P, Q),12+ (P, Q)) (in- 
cluding f~) such that when ~2' lies in this interval 

P ( Q , a )  - 1 < z Q ( z , a ' )  - z < e ( Q , a )  + 1 

Thus, from Eq. (1.5) 

P( a , f~)-  1 e(  o,f~) + 1 
< ~ ( a ' )  < (2.5) 

Q Q 

As Q ~ ~ ,  Eq. (2.5) implies the continuity of o~(f~'). 
Finally, continuity plus the statement ~(~2 + 1) = ~(~2) + 1 implies that 

w(~) takes on all possible values. Thus, for example, there exists an ~2 value, 
i2", such that ~o(~2") = W. 
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2.2. Golden Mean Ordering 

The ordering just described turns out to be particularly simple in the 
"golden mean" case in which r = W. Let the elements of the orbit be 
zj = xj + nj, where z 0 = 0, ns is an integer and xj is the fractional part of zj. 
In the monotonic domain, these orbit elements xj will be ordered in exactly 
the same way as wj - nj for all integer values of j .  

To discuss the ordering of the latter quantities use the Fibonacci 
numbering system, (8) which is based upon the Fibonacci numbers, F~, 
defined by 

F,+, = F n -t- F ,_1,  F 0 = F 1 = 1 (2.6) 

We shall represent any positive integer J by writing it as a sum of 
nonadjacent Fibonacci numbers, i.e., as 

J = ~ r , o , ( J )  (2.7a) 
n = l  

where %(J)  is either zero or one and 

% ( J ) o , +  ~(J) = 0 (2.7b) 

All positive integers can be represented in this form, and the representation 
is unique. (8~ This representation is useful because, for large n, WF, is very 
close to the integer F,_ 1- 

Specifically 

WF, = g,_~ - ( -  W) "+1 (2.8) 

so that Eq. (2.7a) permits splitting WJ into an integer and a remainder 
according to 

WJ= ~ Fn_lon(J ) - E (-w)n+1~ (2 .9)  
n = l  n = l  

One more definition is necessary. The class of J, C(J)  is defined as the 
lowest value of n for which on(J ) is nonzero. Table I gives the decomposi- 
tion of the first few integers and their class value. Note that for even classes 
the remainder term in Eq. (2.9) is positive, while for odd C(J)  it is negative. 
Hence one can write the remainder term in Eq. (2.9) in terms of the 
fractional part of WJ, as 

{ W J }  = (1 /2) [1  + ( - 1 )  c(J)+'] - ( -  W )  c(J)+l 

- (- w)n+l,,.(J) (2.10) 
n = C ( J ) +  2 

For positive J, the xj for the orbit are ordered in exactly the same manner 
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Tab le  I. D e c o m p o s i t i o n  of In tegers  into S u m s  of F ibonacc i  
N u m b e r s .  T h e  Class  is Def ined as the First Va lue  of k 

for W h i c h  ok(J ) is Nonzero .  

ok(J ) for k = 
Integer, J 1 2 3 4 5 Class 

1 I 1 
2 0 1 2 
3 0 0 1 3 
4 1 0 1 ! 
5 0 0 0 1 4 
6 1 0 0 1 t 
7 0 1 0 1 2 
8 0 0 0 0 1 5 
9 1 0 0 0 1 1 

10 0 1 0 0 1 2 
11 0 0 1 0 1 3 
12 1 0 1 0 1 1 

as { W J}.  Figure  1 shows how this order ing  works  out  for the first few 
integers. 

Not ice  how C(J)  serves as the p r imary  de t e rminan t  of the ordering.  
Elements  of different  classes fall  in dis joint  regions with even-class regions 
fall ing on the left  and  off-class regions on the right. If C(J)  = 2m, higher  m 
values appea r  fur ther  to the left. F o r  odd  values of C(J),  higher  classes 
appea r  fur ther  to the right. In  par t i cu la r  if C(J)  = 2m, then the f rac t ional  
part ,  accord ing  to Eq. (2.10), lies in the interval  

{ - WF2m+, } < { WJ } < { - WFzm_,} (2.1 l a )  

while if C(J)  = 2m + ! 

{ -  Wrzm } < { W J }  < { - W r z m + 2  } (2.11b) 

[The der iva t ion  of Eq. (2.1 l a) depends  upon  the s ta tements  { -  WF2m+I } 
= W m+2 and  also W 2 + W - -  1.] 

Cor respond ing  to the s ta tements  (2.11) abou t  the order ing  of { WJ) ,  
we have exact  s ta tements  abou t  the order ing  of the orbi t  e lements  xj for  

E l e m e n t s  x j  . 0 5 2 I0 7 12 4 9 I 6 3 [I 8 0 
I t t I t I I t t t I t a t 

Elements xj . . . .  8 -5 I -2 -5 -13 
CIosseS - ~4  ~ 2 " -I ',*'-'-3 - - ' * -  5 - *  

Fig. 1. Arrangements of trajectory elements within the unit interval for an ordered trajectory 
with w = W. The first two lines list J values for the elements xj. The third line shows class 
intervals. 
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J /> O. We see that xj will lie in class 2m if 

x_&m+~ < xj < x_&,,,_~ 

While it falls in class 2m + 1 if, for m > 1, 

X_F2 ~ < Xj < X_&~+2 

(2.12a) 

(2.12b) 

Figure 1 includes these negative-J orbit elements to show how they serve as 
class boundaries. 

2.3. SupercriUcal Behavior of Ordered Trajectories 

In the supercritical domain [e.g., for model (1.3a) with k > 1] R '(z) can 
be negative. In general, in this case the orbits are not ordered and they are 
very complex. When trajectory elements pass through a region in which 
R'(z) < 0 they can get out of order. However, even in the supercritical case, 
there exist ordered orbits with all possible winding numbers, including 
rational values and also such irrational values as ~0 = W. 

To see how these orbits arise, start from Ro(z ) as shown in Fig. 2a. The 
problem with this Ro(z ) is that it is supercritical, i.e., it has a region of 
negative slope. One can "cure" this by inserting a flat region as in Figs. 2b, 
2c, or 2d. Figure 2b is the general case. The resulting function has a flat 
region but no region of slope approaching zero outside the flat region. We 
call this function Rr(z) .  If the flat region just touches the point of zero 
slope and lies to the left of it as in Fig. 2c, we call the resulting function 
R0 + (z), while we call the flattening of Fig. 2d, in which the zero slope 
appears to the left of the flat region, R o (z). These figures plot RF(z) for 
- -1 /2  < z < 1. To get the rest of the function we demand RF(z + l) 
= R0 (z) + 1. 

Imagine that we found a trajectory for RoE(Z). We can use the ideas 
which apply to the monotonic case in finding this trajectory. If it just so 
happened that this trajectory had no elements inside the flat regions then 
the trajectory would equally well apply to Ro(z ). We would have found our 
required supercritical trajectory. 

But since R r + ~ is a monotonic map, we know that there is an f~ 
value for which the winding number is W. Set 9 equal to this value. Then 
consider the trajectory generated by R F + ~, with the starting point x 0. The 
subsequent trajectory elements zj = x~ + nj, j = 1, 2 . . . .  must have the x/ 
properly ordered (i.e., in the same way as { Wj}) in the interval [0, 1). In 
fact no xj can fall into the forbidden regions [0,x0) or [x;, 1) since if this 
happened there would be a cycle of length j -  1, and hence a winding 
number different from W. 

Note also that for each z =/= x 1 (rood 1) there exists a unique preimage 
z' with R~(z')  + f] = z. Thus one can step by step construct z/ and x~ for 
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1.0 

0.5 

J �9 

I / 
-0.? '  

R+(z) 

l 
/ 

/ 
",, I I 

,, ~ 0 . 5  
I 1, Z 
1.0 

o? 
1.0 �84 

0.5- 

R~(z) 

/ 

N. i [[ I 

\~ / ~o 0.5 i ]% 
Z 

1.0 

Fig. 2. Flattening of the supercritical map. Figure 2a shows the starting map which has 
extrema at z = ~-+ + n, where n is an integer. In 2b, 2c, 2d flattened versions of the map are 
shown with the limits of the flat regions being x~) + n - 1 and x o + n. In 2c and 2d the 
quadratic extrema appear at the edges of the increasing regions. 
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negative values of j .  No negative-j xj can equal x0, since then there would 
be a cycle of length ( - j  + 1). And equally well these elements cannot be in 
the forbidden, flat, regions of R F. In this way we have constructed a 
trajectory zj with winding number W which is equally well an ordered 
trajectory for R F + s and for the supercritical map R 0 + s 

By exactly the same logic one can construct another ordered trajectory 
zj with this same winding number by starting out with the element z~) = x;. 
Let xj be the fractional part of zj. By construction z'l = z 1 + 1 and hence 
for j positive zj = zj + 1 and xj = xj. But since x~ v ~ x 0, for negative j the 
elements of these two cycles are different. 

We know the relative orderings within each of the trajectories xj and 
x~. To get the relative orderings of the terms in the different cycles, notice 

X ~ that the map Rf f+ f~ takes the interval [ _ l ,x  ~] into the forbidden 
interval [X'o,X o + 1], while j applications of the map (for j > 0) take the 
interval [x ' j ,  x_j] into a version of the forbidden interval displaced by an 
integer. It is always true for J > 0 that x ' j  < x_j.  No trajectory elements 
can fall into the intervals [x'_j, x_j] since, if they did there would be a finite 
length cycle. Hence these intervals are all forbidden to any trajectory 
element. For this reason, these intervals must be nonoverlapping. 

Thus we know everything about the relative ordering of the two 
trajectories xj and xj. In particular, 

(a) all elements fall into Ix0, x~)]; 
(b) fo r j  > 0, xj = xj; 
(c) fo r j  < 0, xj < xj; 
(d) i f j  < 0, [xj,xj] is a forbidden region; 
(e) if j =4 k the relative ordering of xj and x; is of the same as the 

ordering of { Wj} relative to (Wk}. Figure 3 depicts the ordering of cycle 
elements given by these rules. Note once again how classes separate. 

Last, we should point out that x 0 and x; are each accumulation points 
for trajectory elements. Assume that they were not. Then there would be 
some accumulation points z~, k -- 0, + 1, + 2 which would themselves form 

i 
| 

Xo 

5 
I , , , , , , I  I 

if . . . . . .  

X~-8 X-8 

2 1 0 7  

I 
/ I L l 4 1 1 1 1 1  I I t 

X-'3 X-3 

1 2 4 9  16  311 8 
I . . . .  I I I [ l,',~, ', . . . . . . . . .  ', I I I I I .... ', , :  

X'-L X- i  X'-2 X-2 X'-5"X-5 

Fig. 3. Arrangement  of trajectory elements within the interval [Xo, X~) ] for an ordered 
trajectory with co = W. The top line shows j values for xj .  The bottom line shows class 
intervals. The hatched regions are forbidden intervals. 
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R*(z) 

1.0 
' i  

, 0.5 

~o-I I " , , ,  "to I X'* : 
I I /  ,, - i /  I i i ,  

T.o.  
/ trajectory 

/ lies here 

/ ", 

/ :  

I ~' Z 

1.0 

Fig. 4. A subcritical map. If the accumulation points of trajectory elements lie in the interval 
[x 0, x*] with x 0 < x* < x ; ,  then this trajectory can be derived from a subcritical map. If 

= W, this is impossible. 

a trajectory with winding number W if Ro(z ) + f~. If these accumulation 
points were bounded away from, say x; ,  by having a maximum x* at 
x* < x 6 this trajectory would be an ordered trajectory of the map R*(x) + 
~2, where R*(x) as depicted in Figure 4, would be subcritical. But every 
subcritical map has an c0 = W trajectory which accumulates over the entire 
unit interval of x. Since by construction no elements fall in [x'_~, x_  1] we 
have reached a contradiction. Both x 0 and x;  must be accumulation points 
of trajectory elements as must be all other trajectory elements. 

2.4. Types of Ordered Trajectories 

Notice that we have in essence proved that a given supercritical 
R(z)  = Ro(Z ) + f~ has a whole family of ordered trajectories. Figure 2b 
depicts a family of RF(z) which depends on where the horizontal line is 
placed. The two limiting cases are given by Figs. 2c and 2d. In these cases 
the trajectories pass through x a or x;,  which are extrema of R(z). In the 
intermediate cases the trajectories avoid the extrema. One should not be 
surprised if the limiting cases lie in a different universality class from the 
intermediate cases. 

As f~ is varied, one would expect that there is a whole interval 
(a*_,f~;) in which there exists a supercritical ordered trajectory with 
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winding number W, with the ends of the interval corresponding to trajecto- 
ries which avoid the flat regions of Figs 2c and 2d, respectively. 

We shall be most interested in the extreme motions in which the 
trajectory passes through one extremum since, in some sense, we expect this 
motion to be the more stable. 

Finally, in special cases, which we shall not further describe here, we 
might have a trajectory with the very same ordering as described here but 
for which x0 and x;  are both extrema of Ro(X ). Model (1.3c) has this 
property. This situation defines yet another kind of ordered supercritical 
trajectory. 

3. A MODEL FOR SUPERCRITICAL BEHAVIOR 

3.1. Simplified Models 

For k > 1, the map of Eq. (1.3) 

= z + ~2 - k sin2crz Ra(z) (3.1) 

is supercritical in that R~(0)<  0. Therefore intervals around z = 0, 
+ 1, +_2 . . . .  become forbidden territory so no elements of an ordered 
orbit may appear in them. As k increases, these forbidden regions become 
wider and wider until for very large k only small intervals about z = + 1/4, 
+ 3 /4  . . . .  become accessible. Near z = 1/4, Eq. (3.1) becomes 

Ra(z ) ~ z + a - 2-~ + ~rk(z - 1/4) 2 (3.2) 

Now we wish to obtain the one-extremum map of Eq. (1.3b). An 
extremum appears in (3.2) at 

= 1 /4  - (2qrk)-I (3.3) 

We then rewrite the mapping problem in terms of a new variable z - $, and 
redefine f~ according to 

f~+ k 1 __~ 
2--~- 4~rk 

Thus in the neighborhood of these extrema, we have a new map defined for 
z ~, n, with n integral 

Ra(z ) = a + n + (3.4) 

Here, X is related to the original k via 

X 2 = ( ~ k ) -  l 

In the region of large k for ordered orbits passing near the extremum 
the map (3.4) is essentially equivalent to (3.1), and simpler. 
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The next step of analysis is to force the ordered behavior by putting 
flat regions into R ( z )  as indicated in Fig. 2b. Consider the case depicted in 
Fig. 2c in which x 0 appears at the minimum if R(z ) .  From Eq. (3.4) x 0 is 
zero. The other parameter used in the flattening is x~, defined via 

= R (x0) + 1 (3.5)  

According to Eq. (3.4) x6 = )t. 
Thus the flattened map becomes equivalent to Eq. (1.3b), i.e., 

R0 + ( z ) =  + for n < z < n + 2 t  (3.6) 

+ 1  for n + h < z < n + l  

We wish to understand the trajectories of (3.6) for small h for winding 
number equal to W. 

An equivalent analysis can be carried out for trajectories which stay 
away from the extrema of Eq. (3.1). Let the trajectories have x values which 
fall between x o and x~. We have (1/4 < x o < 3/4) and x~ just greater than 
x o. Let k >> 1. Then for z near x o Eq. (3.1) implies 

= a - ~ sin2~rx 0 + x 0 + (1 - kcos2~rXo)(Z - Ra(z) Xo) 

Now choose 

h = (1 - k cos 2~rx0)-' (3.7) 

and pick k to be large enough so that 0 < 2t<< 1. If we replace ~2- 
(k/2~r) sin27rx 0 by ~2 and shift variables according to z - x 0 ~  z, we have a 
map which looks like 

z 
R ( z )  = X + f~ for Izl << 1 (3.8) 

Our periodicity and flattening requirements then give the particularly 
simple map of Eq. (1.3d): 

R ~ ( z ) = ( Y - ~ + n  

( n + l  

We can analyze Eq. (3.9) to 

for n < z <<. n + )t 
(3.9) 

for n + 2 t < z < n + l  

get an ordered orbit for k>>l  which 
actually arises from the supercritical map (3.1). 

3.2. Golden Mean Trajectory: Case 1: No Extrema 

The quasilinear map of Eq. (3.9) produces particularly simple ordered 
orbits with winding number W. The map is, in the interesting region, 

R a ( z ) = f ~ + n +  z - n  for 0 < z - n < ~  
h 
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and has an inverse 

R ~ l ( z ) = X ( z - a - n ) + n  for 0 < ( z - a - n ) <  1 (3.10) 

The first few orbit points are then x o = 0, x ;  = X, and x I = f~. Since the 
ordering implies x 0 < x 1 < x ;  we must  have the parameter  f~ lying in the 
interval 0 < f~ < X. 

A more  useful evaluation of f~ is given by listing additional orbit points 
in order of increasing x value as 

X 0 ~-" Z 0 ~--- 0 

x 2 = z  2 -  l = f ~ + f ~ / ~ . -  1 

X '  I = Z ~ ~ - -  
_ ~ + 1 X(X a )  

(3.11) 
x l = z _  l + l = x ( 1 - a )  

X 1 ~ Z 1 ~-  

x 0 =  Zo+ 1 = X  

Since x 0 < x 2 < x'_ 1 , we find 

f ~ = X - X  2 + X  3 +  . . .  (3.12) 

where �9 �9 �9 indicates terms of higher order in •. At  this point, we have the 
following approximate evaluation of orbit  elements 

X 0 ~ - - - 0  

x 2 = OxX 2 + � 9  

X '  ~ -  )k  3 - -  )k  4 " [ "  " " " 
- - 1  

(3.13) 
X _ l  = ~ k - - ) t  2 " l - ) k  3 - -  h 4 " [ -  �9 �9 �9 

X 1 = X - -  ~ 2 _ t _  X 3 -1- " " " 

XO 

To get higher-order results, we need to go two steps further and calculate 
x 3 = z  3 -  1 - - - x 2 / X + f ~ -  1 and x 4 = z  4 - 2 = R ( x 3 ) -  1. Since we know 
X _  1 < X 4  < X1 w e  then find that 

X 1 = ~ ~" X - -  )k 2 -t- )k 3 - -  )k 5 -t- ) t  6 -I- " " " (3.14) 

F rom the evaluation (3.14) and the expressions for the orbit elements, we 
can calculate their power series expansions as 

x j  = ~ Ck)t k 
k 

The data  obtained in this way are listed in Table II. 
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Table II, Expansion of Trajectory Elements in a Power Series in ~. 
for the Quasilinear Map. The Expansion is x = ~kCk~ ~. 

x Class  C 1 C 2 C 3 C 4 C 5 C6 C7 
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x o ce 0 0 0 0 0 0 0 

x '_  3 4 0 0 0 0 0 0 0 

x 3 2 0 0 1 - 1  0 0 0 

x 2 2 0 0 1 - 1 0 - -  - -  

x '_  l 2 0 0 1 - 1 0 1 1 

x _  x 1 1 - 1  1 - 1  0 1 - 1  

x 4 1 1 - 1 1 . . . .  

x I 1 1 - 1  1 0 - 1  1 1 

X "  2 1 1 - 1 1 0 - 1 1 1 

x 2 3 1 0 0 0 - 1  1 0 

x 3 3 1 0 0 0 - -  - -  - -  

x '  s 3 1 0 0 0 - 1 1 0 

x 5 5 1 0 0 0 0 0 0 

x D oo 1 0 0 0 0 0 0 

In our further analysis, we shall pay considerable attention to the 
behavior of the x's in a given class. For even classes, we define a typical 
class element as 

and the class width by 

X (2m) = X F 2  m - -  X 0 (3.15a) 

m x 2 m  = x '  - (3.15b) - - F 2 m _  I X - -  F2m+l 

The corresponding class element for odd m is measured from the other end 
point 

y ( 2 m +  I) ' -- (3.15C) 
X 0 X F 2 ~ + I  

while the class width is 

Not ice  that as m--> oo 
points. For example, we see that 

while y(5) must be of order equal to or higher than )~8 Similarly 

X (2) ~ ~k 3 

while x (4) must be smaller or equal to order ~8. 

A y 2 m + l  = x t - (3.15d) 
- -  F 2 m + 2  X--F2m 

the class elements get closer and closer to the end 

(3.16a) 

(3.16b) 
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In each case, the widths of the classes appears to be much smaller than 
the distance to the end points. Thus, for example, we have 

my 1 ~ )k 4 

Ay 3 ~< O(X 8) (3.16c) 

AX 2 ~ ~k 6 

Because these widths are so small, we shall be able to handle all elements of 
a class as a unit. 

3.3. Golden Mean Trajectory: Case 2: One Extremum 

For this case, we can rewrite Eq. (3.6) as an expression for x, 
xj+ 1 = R~(xfl, with 

Rs for 

1 + (X/~k) 2 for 

The inverse of this map is 

I)t(x - f~ + 1) 1/2 for 

G~-(x) = [X(x a) 1/2 for 

The first few cycle elements are given by 

x o = O  

x ' _ l  = X(X - a )  1/2 

x 1 = X( I  - f~)1/2 

O < x < x  1 - 1  (3.17) 
x l<x<~.  

O < x < a  
(3.18) 

~ < x < ~  

(3.19) 

X l = ~  
1--)k 

X 0 - -  

That the elements are ordered in the same way as in the listing (3.19) 
implies that as ?t-~ 0, f~ ~ X. The next order is given by calculating 

x 2 = (f]/)t) 2 + f] - 1 

x'_2= - a + x ( x -  a)' /2]  '/2 

X_z=X[1-a+X(1-a)l /2]  1/2 

Thus, for example, the statement x_  1 < xl < x'-2 gives 

a = X - X 2 / 2 + O ( X  3) 
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To obtain  the next-order  result quickly notice that  x 2 = ~k-  O(~k 4) and 
hence since x 3 > x_2,  x3 - h  must  have  an order  which is higher than  or 
equal  to X 4. Thus  

x 2 = G~+(x3) = X(X - a ) 1 / 2 +  o ( x  4) = a - 1 + ( a / x )  2 

Finally, then, we can solve this equat ion to find 

a = -X2/2 + [(X4/4)+ X 2 + X'(X- a)l/211/2+ O(X 5) 

which then gives 

= ~ -- ~2 /2  4- y~t 3 -- 3 ,~ t4 /2~  - 
(3.20) 

3' = 1 / 8  + ~ - / 4  

Working  f rom Eq. (3.20), we get a set of lowest order  results for the x ' s  and  
y's, in par t icular  

y(1) = )t2/2 

Ay I = X 3 / 2 ( 5  
(3.21) 

x<~ = X2/~- 

k x  2 = X4/8 

in the limit as )~---> 0. Once more,  we see that  the widths of the class 
intervals are much  smaller than  the distance to the nearest  end point. 

4. RECURSlVE ANALYSES 

4.1. The Recursion Equations 

The mode  of analyses carried out in the last two sections is much  more  
difficult than it need be. If we s imply assume that  all xj's in a given class 
are tightly bunched  together, we ean obtain  a much  simpler and  more  
powerful  way of comput ing  class properties.  Simply assert that  if x j  lies in 
class e 

d R(x) (4.1) 
bc = ~xx x=xj 

is, to a good approximat ion ,  independent  of which par t icular  e lement  is 
being considered. As a corollary consider 

d Fc 
Bc = dx-x ( R )  - l ( x )  x=xj (4.2) 
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when x j  lies in class c. All such x j ' s  have, during the next F c - 1 steps of 
i teration essentially the same "class history." Tha t  is all these iterates fall 
into the same class in the same sequence. In  fact  they fall into class "1"  
F c - 2  times, into class " l"  Fc_t_  1 times, and  into class " c -  1" once. 
Equat ion (4.1) then converts into the s ta tement  

c--I  
B~ = i-'[ (b,) Fc-'-' (4.3) 

l=1 

In  turn, Eq. (4.3) implies a recursion relation for B~, namely,  

B~+ 1 = B~bcB~_ l 

B 0 = B 1 = 1 (4.4) 

Equat ion  (4.4) is one of the major  inputs of our recursive analysis. To  
get the other crucial par t  consider the quantities 

Q2m = (R)F2m(X o + X (2"0) -- (R)F~m(Xo) (4.5a) 

Q2m+l  = (R)Fzm+'(Xto) -- RFzm+'(X~o __y(2m+l) )  (4.5b) 

On one hand,  we can evaluate 

Q2m = X2F2m-  XF2~ (4.6) 

Since 2F2m = F2( m 1) "]- F 2 m + l ,  it follows that  X2F ~ is in class m -- 1 for 
m > 1 and  class 1 for m = 1. Since x (c-2) >> x (~) and  since the classes are 
tightly bunched  we have  

X 2m-2) for m > 1 (4.7a) 
Q2m ~ X 1 -- X o for m = 1 

A similar analysis for Q2m+l gives 

y(2m-l)  for m > 1 
Q2m + 1 = (4.7b) 

x 1 - x 0 for m -- 1 

On the other hand,  we can also write 

Q2m = 1[ R(Xo + x(2m )] R(Xo)] 
Since x (2m) is small the quant i ty  

ezra = R ( x  o + x (2m)) - R(Xo)  (4.Sa) 

is very small, as is the corresponding odd-class quant i ty  

E2m + l  = R (Xto) -- R [ Xto - y(2m + 1)] (4.8b) 

Then,  if we expand Q to first order in �9 we find Qc = ecBc. W h e n  we apply  
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Eq. (4.7) we then get our crucial result 

Ix (c e even and > 2) if is 2 
ecBc = ~y(c-2) if c is odd and /> 3 (4.9) 

L x l  - x 0 i f  c = 2 o r  3 

Equations (4.4), (4.8), and (4.9) form a complete set of relations which can 
be solved to obtain, for example, x (2m~. 

Corresponding analysis can be applied to obtain recursion relations for 
AX2m = X '  -- x and A y 2 m + l  = X '  - _F2~_ t _F2~+ , _F2,n+2 X F2 m . By taking 
f2m-1 recursions on each of the trajectory elements in Ax2m, and assuming 
that Ax2m is small, we find 

Ax2mb2mB2m = x '  o -  x F2 m 

Since X_F2 m forms the boundary of class 2m + 1, we conclude 

Ax2mb2mB2m = y ( 2 m +  1) (4.10) 

and also, by a similar logic 

A.Yam + lb2m+ lB2m - -  x (2m+2) (4.11) 

All the equations we have derived apply whenever the class elements 
are sufficiently tightly bunched. If R ( z )  is very smooth except for singulari- 
ties near the boundaries, a sufficient condition is that 

A y 2 m + l / y  (2re+l) << 1 
(4.12) 

A X 2 m / X ( 2 m )  (< 1 

These conditions hold for our model problems for small values of m, at 
least when )t is small. As we shall see, they hold generically for large m. 
Hence, the recursion relation of this section holds generically for large m. 

Thus, from these relations, we shall obtain generically true statements 
about supercritical ordered trajectories. 

4.2. The Quasilinear Model 

The recursive analysis of the previous section can be trivially carried 
through to answers if the map has the form given in Eq. (3.9). In this 
quasilinear case R ' ( z )  = 1/X for all z's lying in the trajectory. Hence bc of 
Eq. (4.2) is independent of c and is given by 

b C = b = 1/)t (4.13) 

correspondingly Eq. (4.2) gives 

Bc = b F~-l (4.14) 
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which automatically obeys Eq. (4.4). Equations (4.8) imply 

If2m ~ bx  (2m) 

C2m+l ~--- by(2re+l) 

Then Eqs. (4.9) imply, for example, that 

x(2m) l/x(2m--2) ~ b-F2m 

x(2)(b) 2 = X 

which then directly imply that 

X (2m) = ~k F2m+l (4.15a) 

Similar logic can be employed to obtain 

y(2m+l)  = ~kFzm+2 (4.15b) 

Equations (4.10) and (4.11) directly give 

AX2m = [x(2m)] 2 (4.15C) 

AY2m+, = [ y(2m+ 1)]2 (4 .15d)  

All these results directly check against the low-order results of Eqs. (3.16) 
and (3.17). This agreement supports the correctness of the logic given here. 

Notice also that the conditions (4.12) are certainly satisfied either for X 
small or for general X with m large. 

4.3. Generic Case---No Extrema 

For the case in which the trajectory passes through no extrema, the 
generic situation is hardly more complex than the quasilinear model dis- 
cussed above. Require that as e goes to infinity the cycle elements approach 
the end points and that 

if c is even 
bc --4 

v' if c is odd 

The large class solution to Eqs. (4.4) are readily given as 

lnBzm = lnD 8 + A+ W --2m + A_ ( -  W)  2m 

' W -(2rn+l) + A ( -  W) 2'~+' (4.16) 
in B2m + 1 = In D B + A + 

Here A+ and A _, D e and D~ are nonuniversal, but W is, of course, a 
universal characterizer of the trajectory. For the analysis to be correct we 
must have A + > 0. 



Supereritical Behavior of an Ordered Trajectory 23 

Since E2m is propor t ional  to X (2m) o n e  finds immedia te ly  the generic 
answers 

l nx  (2m) -- l n O  - A+ W -(2m+~) - A _  ( -  W )  2m+l (4.17a) 

and  also that  

l ny (2m+l )= lnD ' -A+ W - ( 2 m + 2 ) - A _ ( - W )  2m+2 (4.17b) 

4.4. One Extremum 

A less trivial case arises when there is one quadrat ic  ex t remum,  at  
x = x 0. Then  as c ~ oe, we find 

b C ---> Ib2x(C) 

correspondingly,  

if c is odd  

if c is even (4.18) 

by (~) if c is odd  

if c is even 

Of course, for the quadrat ic  model  these results are true even for  small c. In  
that  case, b = 2//)~. F r o m  Eqs. (4.9) we find that  

bB2m + ly(Zm+ 1) = y (2m-  1) (4.20) 

and  also 

b2mB2m = 2b2m_ : (4.21) 

Generically,  these last equat ions apply  for large m. In  the quadrat ic  model  
they hold down to m = 1 and  2, respectively, and  they are supplemented  by  
the " b o u n d a r y  condi t ions"  

bB 1 y(1) = )t (4.22a) 

b~B 2 = 2b (4.22b) 

Finally, write the recursion relations (4.4) for B as 

B2m+ 1 = b2mB2mB2m-1 (4.23) 

B2rn + 2 = bOzm + 1B2m (4.24) 

which then is supplemented  by  the bounda ry  condit ions B o = B l = 1. 
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Low-order results for the quadratic model are easily recovered from 
these equations. From Eqs. (4.23) and (4.24), we find that B2,B 3 . . . .  are 

h 14h5h2A given by b, bb 2, b3b> b4622b4, b863b4, and finally B v = ~, ~,2~4u6. From Eq. 
(4.22b) and (4.21), we then find successively that to lowest order in X 

b 2 = ~ -  , 

b 4 = b-3/21/2, 

b 6 = b - 4 2 - 1 / 4 ,  

X (4) = )k7/2/4 

X(6) = ~6 /25+ 1/4 

(4.25a) 

Hence 

b2mB2m+l = D 2 m - 1 / b  (4.26) 

where D is a constant to be determined. Using Eqs. (4.21), (4.24), and 
(4.26) we can eliminate all B's from our analysis. First, we find a recursion 
equation for b2m alone, namely, 

b4m 
(b2m+2)262m-2 

Then, Eq. (4.20) yields 

o r  

= 2 m-  1O (4.27) 

B2m+2y(2m+ I) = y(2m- 1)O2m 

y(2m+l) = 2C/B2m+2 (4.28) 

where C is a constant to be determined. From (4.21), we then evaluate 

y(2m+ 1) 2 = Cb2m+z/b2m (4.29) 

Next, go after Ax2m, the width of the class 2m. From Eqs. (4.10) and (4.18) 

AX2m __ 2y(2m+ 1) 

x(2m) )tXb2mBzm- l 

In addition, Eqs. (4.22a) and (4.20) give 

y(1) = ) t2/2  

y(3) = ~4/27/2 (4.25b) 

y(5) = ~k15/2/217/2 

It is also relatively easy to solve the recursion equations. By putting 
together Eqs. (4.23) and (4.21), we find 

b2mB2m+ l -- 262m- 2B2m- 1 
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This expression reduces to 

AX2m Cb 
x(2m) - ~k222m--40 2 b2'~ (4.30) 

Since b2m goes to zero as m ~ oe we can be sure that our class intervals 
really do get sufficiently narrow as m ~ oo. Hence our analysis is certain to 
be correct for large m. 

For the quadratic model evaluate D by setting m = 1 in Eq. (4.26). 
Then 

D = 8 /~k  2 (4.3 la) 

Find C by setting m = 0 in Eq. (4.28). Then 

C = ?t/2 (4.3 lb) 

Equation (4.30) then states that 

AX2m - ~262m 
x(2m ) 22m+ 2 (4.32) 

so that Ax2m/X2, ~ << 1 for small ~t for all m in the quadratic model. For 
m = 1, we can check Eq. (4.32) against Eq. (3.21) and find that we have 
made no errors. 

The general solution of Eq. (4.28) is very easy. Guess a result of the 
form 

bzm = D2mexp[ - A  + (c%)m __ A _ (a_)m] (4.33) 

Notice that this solution works if 

a2_+ - 2 a +  + 1/2 = 0 

or  

c~_+ = 1 _+ ~ - / 2  (4.34) 

Then just so long as A+ > 0, we have a valid solution. Here e% are, of 
course, universal while D, A + ,  and A_ depend upon the details of the 
mapping. From Eq. (4.18) we find that for large m 

lnx (2m) = m l n Z - A + ( e ~ + ) m - A _ ( ~ _ ) m + D x  (4.35) 

where D x is nonuniversal. Correspondingly from Eq. (4.30) we find 

l n y  ( 2 m + ' ) = m l n z - A + ( z e ~ + - l ) ( a + ) m - A _ ( 2 a  - 1 ) ( ~  )m+Dy 

(4.36) 

where Dy is also nonuniversal. Equations (4.35) and (4.36) provide the 
generic large-m solution of the problem of ordered supercritical trajectories 
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with winding number W when the trajectory passes through one quadratic 
extremum. 

4.5. Both End Points Quadratic 

Finally look at a situation in which R ' (x)  is positive between x 0 and x~ 
but goes linearly to zero at both end points. Then for large m we have the 
analog of Eqs. (3.18): 

B2m+ l = b2mB2mB2m- 1 

B2m+ 2 = b2m+ 1B2m + lB2m (4.37) 

Here b2m is proportional to XF2 m -- X o = X (2m) and b2m+l is proportional to 
y(2m+ 1) = X o t  _ _  XF2 m+`. Since Eqs. (4.37) do not distinguish between even or 
odd values of c, we can write 

Bc+ 1 = bcBcB~_ 1 (4.38) 

One can go through the same derivation which led to Eq. (4.21) and find 
for the present case 

bZBc = 2be_ 2 (4.39) 

Equations (4.38) and (4.39) combine to give 

bcBc+l = 2 b c - z B ~ -  1 

which have the solution 

bcB~+l _ ( D for c even (4.40) 
2 (c+1)/2 ~ D'  for c odd 

For simplicity, we specialize to the case in which D = D'.  (One can always 
achieve this result by applying a nonlinear coordinate transformation.) 
Equations (4.40) and (4.39) combine to give a recursion equation for b~ 
alone, namely, 

b22~/2 
C - -  

b~_,bc_ ~ - D - '  (4.41) 

It is then quite easy to solve Eq. (4.41). Try a solution of the form 

b~= F e x p [ - y c  2 -  E c - A ( a )  ~] 

This solution will work if 

2a 2 - a - 1 = 0 

The root a = 1 is not relevant. Take the other root 

a = - 1/2 (4.42) 
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The quantity 7 is determined from the recursion equation to obey 

- 2 7 c :  + 7 ( c -  1)2+ 7 ( c -  2) 2= - ~ l n 2  + const 

Then 7 = (1/12) • ln2. The solution is finally 

b c = F2-C2/12exp( - E c  - A a  ~) (4.43) 

Here F, E, and A are all nonuniversal. 
Once again, we would like bc to go to zero as c becomes infinite. For 

large c, the behavior of b~ is dominated by the factor of 2 -c2/12. Thus, b~ 
always does go to zero as requited. 
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